Saturday, July 20, 2019

Stradivarius: Unsurpassed Artisan or Just Lucky? :: Biology Essays Research Papers

Stradivarius: Unsurpassed Artisan or Just Lucky? There are about seven hundred Stradivarius violins still intact from the 17th century, and they are among the most sought-after instruments in the world (3). Most, if not all, of the greatest violinists of modern times believe that there is something in the Cremonese violins that provides superior tonal quality to all other violins. Skilled violinists can even distinguish between different qualities in the sound produced by individual Stradivarius violins. The challenge for scientists is to characterize such differences by physical measurements. In practice, it is extremely difficult to distinguish between a Stradivarius instrument and a modern copy on the basis of measured responses because the ear is a supreme detection device and the brain is a far more sophisticated analyzer of complex sounds than any system yet developed to assess musical quality. There have been many theories as to why Stradivarius violins produce such legendary brilliance and resonance, none providing a conclu sive answer. To understand the factors that affect the quality of sound produced by violins, the functioning of the violin must be understood. First of all, sound is produced by drawing a bow across one or more of the four stretched strings, but the strings themselves produce almost no sound. The energy from the vibrating string is transferred to the sound box, which is the main body of the violin. The bridge, which supports the strings, acts as a mechanical transformer; it converts the transverse forces of the strings into the vibrational modes of the sound box (4). The bridge itself also has resonant modes, playing a role in the overall tone. The front plate of the violin is expertly carved with f-holes which boost the sound output at low frequencies, through the Helmholtz air resonance. The Helmholtz air resonance describes the action of the air bouncing backwards and forwards through the f-holes (1). Then, front and back plates are skillfully carved to get the right degree of arching and vari ation in thickness. Even the tiniest changes in the thickness of the plates and the smallest variations in the properties of the wood will significantly affect the specific resonance in the frequency range (1). There are many theories as to the "secret" of Stradivarius violins. Of course what was obviously first explored was the exact size of the violins and ratio of the parts of the violin to each other. It was proposed

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.